
Written by Dr. Hannah Shorrock
Edited by Celeste Suart
Understanding non-motor functions and factors that govern differential vulnerability in the cerebellum will help to inform preclinical therapy development, from CRISPR to small molecules, and provides important considerations for imaging studies.
The Wednesday afternoon series of talks at ICAR will begin with a plenary session on the non-motor functions of the cerebellum. This session will provide an overview of the involvement of the cerebellum in cognition, emotion, and impulsivity. Some of these non-motor differences are present before the onset of balance symptoms. Understanding the complete spectrum of ataxia symptoms and behaviours will enable scientists to develop appropriate interventions to treat all aspects of ataxia.
Following the plenary session, attendees have the option to learn more about cerebellar function, preclinical therapy development, or imaging studies.
In the workshop on cerebellar function and anatomy, there will be a key focus on understanding what is going on in certain types of cells that make them more vulnerable to ataxia. Specifically, researchers will discuss cerebellum and Purkinje neuron cells. The role of glia cells in cerebellar dysfunction in disease will also be discussed. Then the workshop will build on the plenary session to discuss the role of the cerebellum in reinforcement-based learning. Workshops such as this provide a unique opportunity for researchers to learn, discuss and relate a specific topic area to their research.
In the session on preclinical therapy development, researchers will discuss recent advances, including:
- The use of CRISPR gene editing for Fragile X-associated tremor/ataxia syndrome
- Gene therapy for Christianson syndrome
- The use of miRNAs and siRNAs to reduce levels of mutant ATXN3 in SCA3
- The development of antisense oligonucleotides for the treatment of Dentatorubral-pallidoluysian atrophy.
We will also discuss the use of small molecules, some already FDA-approved, that target specific disease pathways or pathogenic species in ARSACS, SCA8 and SCAs caused by CAG expansions. Repurposing FDA-approved small molecules for the treatment of ataxias may provide a faster route to patient intervention. Understanding the best therapeutic strategies in model systems is important to ultimately provide the greatest chance for success at clinical trials.
The final session focuses on the use of MRI and PET imaging as biomarkers for ataxias. There will be talks on imaging the brain, spinal cord, dorsal root ganglia and heart in Friedreich’s ataxia. Research about the use of MRI to detect changes in SCA3 gene carriers’ brains before symptoms start will be shared. Findings on the development of MRI as a diagnostic tool for multiple system atrophy type C will also be shared. Imaging biomarkers will be a key component in clinical trials for ataxias. Understanding the uses and limitations of biomarkers will be necessary for successful implementation.

To be or SCA27B? That is the Question: Mystery ataxia cases solved by advances in genetic technology
Written by Dr. Hayley McLoughlin and Dr. Sharan Srinivasan Edited by Dr. Celeste Suart A novel genetic sequencing technology uncovered numerous familial ataxia cases linked to a unique mutation in Read More…

Snapshot: What are somatic expansions?
In a nutshell: somatic expansions are expansions of repeat DNA sequences that accumulate in cells over an individual’s lifetime. A special kind of mutation: repeat expansion mutations Some genes naturally Read More…

Decoding the language of cells in the cerebellum to understand the progression of symptoms in SCA3
Written by Dr. Ambika Tewari Edited by Dr. Larissa Nitschke The abnormal activity of cells in the deep cerebellar nuclei and Purkinje cells correlate with the early onset of motor Read More…